
SPHERE: Supporting Personalized Feedback at Scale in
Programming Classrooms with Structured Review of Generative

AI Outputs
Xiaohang Tang
Virginia Tech

Blacksburg, Virginia, USA
xiaohangtang@vt.edu

Sam Wong
University of Washington
Seattle, Washington, USA

samw627@uw.edu

Marcus Huynh
Virginia Tech

Blacksburg, Virginia, USA
mjhuynh@vt.edu

Zicheng He
University of Virginia

Charlottesville, Virginia, USA
bgc4bx@virginia.edu

Yalong Yang
Georgia Institute of Technology

Atlanta, Georgia, USA
yalong.yang@gatech.edu

Yan Chen
Virginia Tech

Blacksburg, Virginia, USA
ych@vt.edu

Abstract
This paper introduces SPHERE, a system that enables instructors
to effectively create and review personalized feedback for in-class
coding activities. Comprehensive personalized feedback is crucial
for programming learning. However, providing such feedback in
large programming classrooms poses significant challenges for in-
structors. While Large Language Models (LLMs) offer potential
assistance, how to efficiently ensure the quality of LLM-generated
feedback remains an open question. SPHERE guides instructors’ at-
tention to critical students’ issues, empowers them with guided con-
trol over LLM-generated feedback, and provides visual scaffolding
to facilitate verification of feedback quality. Our between-subject
study with 20 participants demonstrates SPHERE’s effectiveness
in creating more high-quality feedback while not increasing the
time spent on the overall review process compared to a baseline
system. This work contributes a synergistic approach to scaling
personalized feedback in programming education, addressing the
challenges of real-time response, issue prioritization, and large-
scale personalization.

CCS Concepts
• Human-centered computing → Interactive systems and
tools; Natural language interfaces; • Social and professional top-
ics→ Computing education; • Applied computing→ Education.

Keywords
Generative AI, Large Language Model, Programming Education at
Scale, Feedback, Computing Education

ACM Reference Format:
Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang,
and Yan Chen. 2025. SPHERE: Supporting Personalized Feedback at Scale in
Programming Classrooms with Structured Review of Generative AI Outputs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1395-8/25/04
https://doi.org/10.1145/3706599.3720203

In Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems (CHI EA ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3706599.3720203

1 Introduction
When learning to program, personalized feedback is among the
most effective ways to help students bridge the gap between their
current understanding and performance and their desired learning
goals [4, 13, 14]. To create effective personalized feedback, instruc-
tors need to assess students’ coding challenges in the context of
class learning objectives, consider each student’s competencies and
help resources, and tailor guidance to both the specific problem and
the student’s cognitive state. However, in programming classrooms,
it is challenging to provide effective personalized feedback due to
the sheer volume of time-sensitive issues arising from ongoing class
exercises, such as coding and small group discussions, far exceeding
instructors’ attention capacity.

Past research and our own formative work with programming
instructors have shown a large gap between the effort they put into
providing feedback to students during class exercises using existing
methods and the increasing number of questions that students
accumulate during the exercises. Whether in-person (e.g., raising
hands) or technology-based (e.g., learning dashboards like VizProg
[32] and VizGroup [26]), these methods fall short of addressing this
challenge. In fact, we argue that in-person approaches often result
in less-personalized feedback due to time constraints and social
context during the exercises, while learning dashboards can lead
to information overload in large classes. This overload, combined
with human and UI biases, often leads instructors to focus on issues
that are more familiar or quickly addressable, rather than those
that may be most critical. These limitations highlight three critical
support needs for instructors: prioritizing critical issues, providing
real-time feedback on these issues, and ensuring personalization of
feedback at scale.

In this paper, we present SPHERE1, an interactive system de-
signed to help programming instructors create personalized feed-
back at scale for class exercises, including writing code and dis-
cussing code in groups. SPHERE combines intelligent issue detec-
tion with structured feedback generation and review. Specifically,
1SPHERE is an acronym for Scaling Personalized HElp in REal-time

https://orcid.org/0000-0002-2691-9280
https://orcid.org/0009-0005-0936-1368
https://orcid.org/0009-0007-2651-4666
https://orcid.org/0009-0003-1136-6585
https://orcid.org/0000-0001-9414-9911
https://orcid.org/0000-0002-1646-6935
https://doi.org/10.1145/3706599.3720203
https://doi.org/10.1145/3706599.3720203

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Figure 1: SPHERE’s Workflow Overview. Once students’ conversation logs, code history, and code errors come in (1), SPHERE
continuously identifies critical issues and recommends them to the instructors (2). Instructors select the critical issues for
feedback, which are then summarized and categorized to create Feedback Templates (3). These templates are previewed by
instructors and further clustered (4) with relevant Code Evidence (5) and Conversation Evidence (6) after being filled out to
provide context and support a rapid verification process. This results in personalized feedback being sent to each student (7).

SPHERE first employs a novel LLM architecture that continuously
identifies key patterns in student coding and group activities. Then,
SPHERE uses our “strategy-detail-verify” approach to ensure the
quality of feedback created: 1) it allows instructors to strategically
guide the LLM to generate high-quality feedback corresponding
to these issues using key feedback components, and 2) it also pro-
vides information visualization bindings to facilitate instructors’
rapid verification of the personalization and accuracy of feedback
(details) in relation to corresponding issues. To evaluate the effec-
tiveness of SPHERE, we conducted an in-lab, between-subject study
with 20 instructors. The results underscore SPHERE’s capacity to
both streamline the feedback process and deepen instructors’ en-
gagement with feedback creation, which in turn can enable more
impactful and aligned student guidance.

2 Related Work
Providing timely and effective feedback is critical for enhancing
student learning [6, 14]. Recent AI-based approaches facilitate feed-
back creation for code understanding and auto generation [9, 19],
yet studies show these methods can be only about 50% accurate in
assessing the correct mistakes [8], and students frequently find the
feedback confusing or in need of manual validation [21]. This un-
derscores the necessity for scalable yet reliable feedback solutions.

In synchronous classrooms, analytics tools such as EduSense [1],
AffectiveSpotlight [18], Glancee [16], Lumilo [15], VizProg [32],
and Codeopticon [12] provide real-time insights into student en-
gagement and performance, informing instructors of class-wide
and individual needs. Systems like VizGroup [26], Pair-Up [31],
Groupdynamics [23], and ClassInsights [20] further analyze collab-
orative behaviors, yet many instructors still struggle to determine
how best to intervene based on these data. Human instructors re-
main irreplaceable for nuanced, real-time decisions in classroom
settings [5, 7], but this requires significant effort and flexibility [27].
Therefore, there is a pressing need for strategies and tools that

enable instructors to efficiently identify and address critical stu-
dent issues at scale. Our work addresses this gap by providing an
approach that supports educators in delivering prompt, personal-
ized feedback, enhancing student engagement and learning while
preserving the essential role of human instructors.

3 Design Goals
We conducted a targeted formative study to contextualize these
challenges within the specific setting of in-class collaborative pro-
gramming exercises at the university level. This study aimed to
bridge the gap between general educational research and the unique
demands of real-time, collaborative coding environments. We en-
gaged four experienced instructors (22 years of teaching experience
on average, 𝜎 = 9.93) of introductory programming courses at
universities in in-depth interviews lasting 30 to 60 minutes each.

Based on our formative study and the identified gaps in existing
literature, we established the following design goals to guide the
development of SPHERE:
• DG1: Effectively Guide Instructor Attention to Critical Is-
sues in Real-Time. To address the challenge of information
overload in large-scale programming sessions, the system should
help direct instructors’ attention to the most significant issues
and patterns emerging from students’ collaborative activities
with minimal effort.

• DG2: Empower Instructors with Guided Control over LLM-
Generated Feedback. To bridge the gap between LLM capabili-
ties and effective personalized feedback, the system should offer
intuitive mechanisms for instructors to guide and control the
feedback generation process.

• DG3: Reduce the Time and Effort Required to Ensure the
Quality of LLM-generated Feedback. To mitigate risks as-
sociated with AI-generated content, such as hallucinations or
misalignment with learning objectives, the system must facilitate
quick identification and rectification of issues in AI-generated
feedback.

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 2: Critical Issue Recommendation Panel consists of Scatterplot, Critical Issue View and Detailed Issue. (1) Scatterplot
changes based on group view. Critical Issue component consists of (2) Name of the Critical Issue, (3) Description of the Critical
Issue, (4) Top 2 sub issue, (7) Number of Students with this critical issue, (8) Average passrate of students with this critical issue.
Instructors can (5) note down and save the critical issue or (9) give feedback to the critical issue. Instructors can sort critical
issue based on pass rate, number of students or severity. (10)Selecting a critical issue would display example submission and
(11)highlight relevant datapoints.

4 SPHERE
Figure 1 illustrates SPHERE’s system workflow. SPHERE’s UI con-
sists of two main components: a Critical Issue Recommendation
Panel (Figure 2), and a Structured Feedback Creation and Review
Panel (Figure 3a).

4.1 Critical Issue Recommendation Panel
To effectively guide instructor attention to critical issues (DG1),
SPHERE employs a custom LLM framework (Section 4.2) that con-
tinuously identifies patterns in students’ coding activities and group
interactions, classifies those that are critical, and then displays them
on a teacher dashboard (Fig. 2). Teacher dashboards are visual dis-
plays that show student learning activities and progress. There are
extensive studies on how to design an effective teacher dashboard
and how they can help teachers inform their interventions and
decision making [11, 28, 29]. Building upon prior work [2, 26, 32],
SPHERE’s dashboard contains a high-level scatter plot showing
students’/groups’ pass rates and the number of messages they have
sent (left), a list of curated critical issues detected dynamically by
the system (middle), and detailed information for each critical issue
upon user click (right).

4.2 Critical Issue Recommendation Model
Prior work has shown LLMs’ potential to identify and classify
students’ challenges [24]. To ensure that the LLM can effectively
identify students with critical issues, we annotated two previously
recorded programming exercise sessions collected from live col-
laborative programming sessions conducted at a local university,
resulting in 502 data points in total. Two members of our research

team annotated the recorded student activity data regarding (1)
whether an issue is critical or not and (2) types of issues using an
annotation tool (details in the Appendix) that allows annotators
to watch a playback of and label different segments of student ac-
tivity. The two annotators first conducted rounds of initial coding
independently (including pilot coding sessions), and met multiple
times to discuss their annotations for clarifications and to resolve
any discrepancies. We then performed inter-rater reliability test
for the 103 initially coded student activity data points which cover
20% in overlapped coding. Out of the 103 initially coded data, we
report a Cohen-Kappa score for determining whether an issue is
critical or not of 0.85. Across all labels (detailed in the Appendix, we
report a mean Cohen-Kappa score of 0.78 (𝑆.𝐸. = 0.08). Based on
the minimum Cohen-Kappa score across all label (0.53 for Syntax
Error label), the annotators reached a moderate agreement and
thus the annotators proceeded with independent coding for the
remaining 400 labels. After the labels were finalized, we randomly
split the dataset into training and test sets, containing 80% and 20%
of the original dataset, respectively. The training data are used for
selecting few-shot examples and adjusting parameters. We used
GPT-4o in the data training process, and state-of-the-art prompt-
ing engineering techniques, such as few-shot prompts [3] and AI-
chains [30] were adopted. After evaluating the model with test data,
we report an accuracy score of 0.71 for the LLM identifying issues
that are critical and an 𝐹1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 score of 0.57.

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

(a) (b)

Figure 3: Left: User Interface for creating and reviewing LLM-generated feedback. (1) Instructor can select different feedback
types, which will select a subset of (2) feedback components. (3) Instructors can then generate feedback for preview.
Right: Feedbacks are generated for each sub issue, which includes the name of the sub issue (4), the number of students in
the sub issue (1), the feedback template with components as placeholders (2) and component description (3). Instructors are
able to edit the template (5). Feedback is then generated in clusters that include code evidence (9) and conversation evidence
(10). Feedback for each component is highlighted with their corresponding colors (6). Instructors can choose to edit or send
individual feedback (7, 8).

4.3 Personalized Feedback Creation & Review
Panel

When selecting an action, instructors can provide feedback on the
currently selected issue. To facilitate personalized feedback genera-
tion (DG2), we developed a ‘strategy-detail-verify’ workflow. First,
instructors can strategize by choosing the most appropriate feed-
back mode from three options: Hints, Explanation, or Verification
(Figure 3a.1). Upon pressing the generate button, a template for the
specific feedback type is created, personalized for each sub issue,
with placeholders inserted at designated positions. Next, feedback is
generated in smaller clusters for each subissue, allowing instructors
to see the details of the feedback intended for each student. Re-
lated code examples and conversations are displayed alongside the
feedback. Finally, instructors can verify the validity of the feedback
before deciding whether to send it to students. This step ensures
the appropriateness and accuracy of the feedback.

4.3.1 Component Based Feedback Generation. Feedback is struc-
tured to consist of up to 5 components: Issue , Strategy ,

Solution , Example , Next step . These five components are de-
rived from Hattie et al.’s feedback model [14], which states that
effective feedback answers three questions: (1) What are the goals?
(2) What has been done to progress towards the goals? and (3) What
activities need to be undertaken to make better progress? Furthermore,
each piece of feedback is directed at three levels respectively: Task
Level, Process Level, and Self-Regulation Level according to the feed-
back model [14]. Instructors often give feedback to guide students
who are stuck, clarify students’ confusion, or check students’ under-
standing. Hence, depending on each student’s situation, instructors
can provide different types of feedback (Hints, Explanations, or
Verifications). Providing such feedback presets allows instructors to
quickly generate feedback that fits their teaching strategy, thereby
reducing the time required to draft feedback (DG3).

Step 1: Feedback Template Generation: SPHERE takes in the issue
description, feedback type and chosen components, and generates a
feedback template with selected content as placeholders (in [square
brackets]), as well as feedback corresponding to each component
(see Figure 3b.2).

Step 2: Detailed Feedback Composition SPHERE then takes the
generated list of component feedback and applies it to the tem-
plate, generating a complete feedback for students. It also takes in
student information and elaborates on student’s performance by
referencing their coding and conversation history.

4.3.2 Feedback Clusters with highlights on Evidence. Our design
for displaying feedback clusters aligns with prior literature on de-
signing UI elements for validating large-scale LLM outputs, which
allows users to determine whether the AI-generated feedback meets
their current needs [10]. Feedback is generated in clusters to enable
instructors to easily review the generated content (DG3). Under
each sub-issue within a critical issue (Figure 2.12), feedback is fur-
ther clustered into smaller groups to ensure that instructors can
easily review different feedback clusters. To facilitate easy verifi-
cation of feedback (DG3), we incorporated highlighting as a way
for instructors to review how each component is incorporated into
the final feedback, as well as the related code or conversation that
reflects the feedback.

5 Lab Study
We conducted an in-person between-subject user study to examine
SPHERE’s usability and effectiveness for identifying students’ issues
and sending feedback. The study is approved by the IRB at our
institute. We recruited 20 participants (7 female, 11 male, 2 non-
binary) who have both teaching and programming experiences at a
four-year university via personal networks, local mailing lists, and
snowball sampling. Each participant was compensated with $15
USD for their time and effort.

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Condition Generated Sent Edited∗∗
Incorrect Shallow High Incorrect Shallow High Low-low Low-high High-low High-high

Baseline 44.17% 10.00% 45.83% 45.00% 8.67% 46.33% 45.00% 20.00% 5.00% 30.00%
SPHERE 14.16%∗ 5.00% 80.83%∗∗ 9.17%∗∗ 10.67% 80.17%∗∗ 0.00% 22.22% 0.00% 77.78%

Table 1: Feedback Quality in the Sampled Dataset. Edited feedback messages are grouped by the change of qualities before and
after the edit, where low-quality feedback includes both incorrect feedback and shallow feedback. Data of edited changes are
tested by the Fisher Exact Probability Test (𝑝 = 0.001). ∗ indicates 𝑝 < 0.05, while ∗∗ indicates 𝑝 < 0.01.

Condition Mental demand Physical demand Temporal demand Performance Effort Frustration

Baseline 5.0 (4.60 ± 1.26) 2.0 (2.10 ± 1.20) 5.0 (4.60 ± 1.17) 4.0 (3.90 ± 1.37) 4.0 (4.00 ± 1.25) 2.5 (2.70 ± 1.57)
SPHERE 5.5 (4.80 ± 1.93) 2.0 (2.30 ± 1.49) 5.0 (4.60 ± 1.78) 3.0 (3.10 ± 1.10) 4.0 (4.20 ± 1.48) 2.5 (3.00 ± 1.76)

Table 2: Response to NASA TLX items. Format: median (mean ± standard deviation)

5.1 Protocol
5.1.1 Live Simulation. To simulate the real-time, in-class teaching
experience of a large lecture, we asked participants to interact with
a live playback of an in-class exercise session, inspecting and giving
feedback on student behaviors. To ensure the authenticity of the
data participants interacted with, we used a research tool [25] to
capture real data from a large introductory-level university pro-
gramming course’s collaborative exercise session that involved 111
students. During the exercise session, students first worked on a
Python programming exercise, and then they were divided into
groups to discuss their issues and help each other on their laptops.
The Python problem was to write a function to count the number
of elements less than 100 in a given list.

5.1.2 Conditions. Each participant used the system under one of
the following conditions:
• Baseline: a baseline version of SPHERE without any feedback
type, feedback component, and feedback template for generation,
and participants control the feedback generation by editing the
prompt to instruct the LLM, which is one of the most common
ways to use LLM. A default prompt was given to ask AI to gener-
ate feedback based on the student’s recent code submissions and
discussions. There is no visual augmentation for feedback review
either, but the baseline version still had the complete Critical
Issue Recommendation Panel.

• SPHERE: a full version of SPHERE with all its features.

5.1.3 Tasks. Each participant completed three tasks in the study:
• T1 and T2: Task 1 (T1) and Task 2 (T2) asked participants to
help as many struggling students as they could by checking the
critical issue recommendation panel and sending feedback. T1
and T2 were limited to 6 minutes each.

• T3: Task 3 (T3) asked participants to help students who were
actively discussing but with low performance by selecting the
plot and sending feedback on a certain time stamp.

T1 covers the individual programming stage of the exercise session,
while T2 and T3 focus on the collaborative programming stage.
For all three tasks, we emphasized the importance of the feedback
quality to participants and had them understand the stake level of

the tasks by asking them to imagine this is the live class setting.
T1 and T2 were designed to mimic the real-world circumstances
that instructors need to address students’ issues while facing the
dynamically changed issue set and limited time. Similarly, T3 was
designed to simulate a more focused issue-resolving process while
still needing to provide timely support to students.

5.1.4 Study Procedure. Each study was conducted in person in a
lab setting and lasted around 45 minutes. At the beginning of each
study session, we collected informed consent from the participants
after introducing the goal and the process of the study. After that,
we gave participants an explanation of the context of the data and
tasks used in the study. Following the general introduction and
explanation, we then offered a detailed tutorial of the system and a
warm up session.

Once they were familiar with the system, participants were asked
to complete the three designed tasks. At the end of the study, par-
ticipants completed a survey with Likert scale questions and partic-
ipated in a semi-structured interview. All studies were screen- and
audio-recorded and participants were asked to think aloud while
completing the survey questions. The order of conditions and tasks
were counter-balanced and randomized.

5.2 Results
By recording the feedback participants generated, edited, and sent
in the user study, we collected 5871 feedback messages in total (5049
generated, 107 edited, 715 sent). To evaluate the quality of the feed-
back, two researchers used a custom annotation tool to annotate
the feedback data (details in the Appendix). The annotation process
was as follows: First, we sampled feedback data from each partici-
pant and each task proportionally (1% of generated feedback, 20% of
edited feedback, and 10% of sent feedback) and randomly shuffled
the sampled data. Then, each sampled data point was coded into
one of the following three categories: incorrect feedback, shallow
feedback, and high-quality feedback. A description of the coding
standards is provided in the Appendix. After initializing the coding
scheme, the two researchers first conducted a pilot coding meet-
ing and discussion to clarify and resolve conflicts on the coding

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

standards. Then, they began independently coding the same sam-
pled dataset. For the independent annotations, the agreement on
incorrect feedback, shallow feedback, and high-quality feedback was
85.96%, 53.33%, and 96.15%, respectively. To achieve a high level of
consensus [17], the two researchers then negotiated and resolved
each disagreement through discussion until 100% agreement was
reached on the coded sample dataset (Table1).

5.2.1 SPHERE helped participants create better feedback. Partici-
pants using SPHERE sent significantly more high-quality feedback
(SPHERE: 𝜇 = 80.17%, 𝜎 = 0.17; baseline: 𝜇 = 46.33%, 𝜎 = 0.28;
𝑝 < 0.01), while they also sent less incorrect feedback (SPHERE:
𝜇 = 9.1717%, 𝜎 = 0.15; baseline: 𝜇 = 45.00%, 𝜎 = 0.31; 𝑝 < 0.01) in
the sampled sent dataset. We did not find evidence of a significant
difference in the number of shallow feedback between two condi-
tions (SPHERE: 𝜇 = 10.67%, 𝜎 = 0.17; baseline: 𝜇 = 8.67%, 𝜎 = 0.14).

5.2.2 SPHERE helped participants control feedback generation.
Based on the sampled generated dataset, under SPHERE condition,
participants generated significantly more (SPHERE: 𝜇 = 80.83%, 𝜎 =

0.22; baseline: 𝜇 = 45.83%, 𝜎 = 0.28; 𝑝 < 0.01) high-quality feedback
than the baseline while generated less (SPHERE: 𝜇 = 14.16%, 𝜎 =

0.15; baseline: 𝜇 = 44.17%, 𝜎 = 0.32; 𝑝 < 0.05) incorrect feedback.
On average, there are 5.00% (𝜎 = 0.11) shallow feedback in feedback
generated by SPHERE and 10.00% (𝜎 = 0.16) shallow feedback in
feedback generated by the baseline. During the study, participants
using SPHERE attempted 2.40 (𝜎 = 2.07) times modifying feed-
back type and component to generate new feedback, while partici-
pants using the baseline attempted 1.8 (𝜎 = 2.30) times editing the
prompts to control the generation results. The survey results show
that participants reported high-level perceived controls of the feed-
back generation process for both SPHERE (𝑀𝑒𝑑𝑖𝑎𝑛 = 6.00, 𝜎 = 1.71)
and the baseline system (𝑀𝑒𝑑𝑖𝑎𝑛 = 5.50, 𝜎 = 1.76), as well as the
perceived ease of control level (SPHERE:𝑀𝑒𝑑𝑖𝑎𝑛 = 5.50, 𝜎 = 1.17;
Baseline:𝑀𝑒𝑑𝑖𝑎𝑛 = 6.00, 𝜎 = 1.17).

Though we could not obtain a significant difference in the num-
ber of attempts to control the generation process, participants’
behaviors reflect the difference in their intentions. Under the base-
line condition, participants’ intentions of controlling generation are
verbally expressed in the modified prompt, e.g., “Try and shorten the
response”, “Don’t give away answers” (P8). The goals are limited to
low-level requirements about the length of the generation and not
to include the direct solution in the result. Whereas, using SPHERE,
participants tended to think about the type of help they would
like to offer to students, which is unseen in the baseline condition.
For instance, P9 included example generation in the feedback for
students who "lacked basic knowledge" in order to help them get
started with the problem. P5 suggests that they would consider
excluding some components in the feedback depending on the
severity of the issue. Moreover, participants also commented on the
feedback SPHERE generated as like “from a senior instructor” (P7).

5.2.3 SPHERE helped participants improve feedback quality. Dur-
ing the user study, participants made 6.20 (𝜎 = 8.75) edits using
SPHERE, and participants using the baseline edited 4.50 (𝜎 = 3.10)
messages on average. To compare the quality of feedback messages
before and after the edits, we take both incorrect feedback and shal-
low feedback as low-quality feedback. After that, there would be

four types of quality change: low-to-low, low-to-high, high-to-low,
and high-to-high. While the number of edits is similar for the two
conditions, in the sampled edited dataset, there are 22.22% low-to-
high and 77.78% high-to-high changes under SPHERE condition,
while there are 45.00% low-to-low, 20.00% low-to-high and 5.00%
high-to-low, and 30.00% high-to-high changes under the baseline
condition. Moreover, using the Fisher Exact Probability Test [22],
we found that participants were significantly more likely to convert
lower-quality feedback (i.e., incorrect feedback and shallow feedback)
into higher-quality feedback (𝑝 = 0.001) using SPHERE.

6 Limitation and Future Work
While our evaluation was done in a lab setting instead of in a real
classroom – and thus, a reduced set of distractions may impact the
available attention that the instructor has to validate and generate
feedback – we believe it clearly shows that the overall net effect of
SPHERE is positive. Our focus was on the impact of SPHERE on
instructors’ ability to provide feedback that they felt was effective,
but we did not explore the impact on students directly. Future work
will explore how different feedback variations affect both perceived
and real student outcomes over time, and how this feedback can
be fed back to instructors to give them deeper insights and enable
more comprehensive personalization.

7 Conclusion
In this paper, we present SPHERE, an interactive system designed
to help programming instructors create personalized feedback at
scale for class exercises. Our study shows that SPHERE helped in-
structors create more high-quality feedback, and enable them to
transform initially low-quality feedback into higher-quality ver-
sions more frequently. These results offer insights into AI-assisted
educational tools, demonstrating how to scale personalized feed-
back in programming courses while addressing real-time response,
prioritizing issues, and engaging instructors more deeply.

References
[1] Karan Ahuja, Dohyun Kim, Franceska Xhakaj, Virag Varga, Anne Xie, Stanley

Zhang, Jay Eric Townsend, Chris Harrison, Amy Ogan, and Yuvraj Agarwal.
2019. EduSense: Practical classroom sensing at Scale. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (2019), 1–26.

[2] Vincent Aleven, Jori Blankestijn, LuEttaMae Lawrence, Tomohiro Nagashima,
and Niels Taatgen. 2022. A dashboard to support teachers during students’
self-paced AI-supported problem-solving practice. In European Conference on
Technology Enhanced Learning. Springer, 16–30.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[4] Deborah L Butler and Philip HWinne. 1995. Feedback and self-regulated learning:
A theoretical synthesis. Review of educational research 65, 3 (1995), 245–281.

[5] Çiğdem Suzan Çardak and Kıymet Selvi. 2016. Increasing teacher candidates’
ways of interaction and levels of learning through action research in a blended
course. Computers in Human Behavior 61 (2016), 488–506.

[6] Yan Chen, Jaylin Herskovitz, Gabriel Matute, April Wang, SangWon Lee, Walter S
Lasecki, and Steve Oney. 2020. EdCode: Towards Personalized Support at Scale for
Remote Assistance in CS Education. In 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1–5.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

[7] Anna Comas-Quinn. 2011. Learning to teach online or learning to become an
online teacher: An exploration of teachers’ experiences in a blended learning
course. ReCALL 23, 3 (2011), 218–232.

[8] Iria Estévez-Ayres, Patricia Callejo, Miguel Ángel Hombrados-Herrera, Carlos
Alario-Hoyos, and Carlos Delgado Kloos. 2024. Evaluation of LLM Tools for
Feedback Generation in a Course on Concurrent Programming. International
Journal of Artificial Intelligence in Education (2024), 1–17.

[9] Hagit Gabbay and Anat Cohen. 2024. Combining LLM-Generated and Test-Based
Feedback in a MOOC for Programming. In Proceedings of the Eleventh ACM
Conference on Learning@ Scale. 177–187.

[10] Elena L. Glassman, Ziwei Gu, and Jonathan K. Kummerfeld. 2024. AI-Resilient
Interfaces. arXiv:2405.08447 [cs.HC] https://arxiv.org/abs/2405.08447

[11] WolfgangGreller andHendrik Drachsler. 2012. Translating learning into numbers:
A generic framework for learning analytics. Journal of Educational Technology &
Society 15, 3 (2012), 42–57.

[12] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for
computer programming. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). ACM,
Association for Computing Machinery, New York, NY, USA, 599–608. https:
//doi.org/10.1145/2807442.2807469

[13] John Hattie. 2012. Visible learning for teachers: Maximizing impact on learning.
Routledge.

[14] John Hattie and Helen Timperley. 2007. The power of feedback. Review of
educational research 77, 1 (2007), 81–112.

[15] Kenneth Holstein, Gena Hong, Mera Tegene, Bruce M McLaren, and Vincent
Aleven. 2018. The classroom as a dashboard: Co-designing wearable cognitive
augmentation for K-12 teachers. In Proceedings of the 8th international conference
on learning Analytics and knowledge. 79–88.

[16] Shuai Ma, Taichang Zhou, Fei Nie, and Xiaojuan Ma. 2022. Glancee: An adaptable
system for instructors to grasp student learning status in synchronous online
classes. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems. 1–25.

[17] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (nov
2019), 23 pages. https://doi.org/10.1145/3359174

[18] Prasanth Murali, Javier Hernandez, Daniel McDuff, Kael Rowan, Jina Suh, and
Mary Czerwinski. 2021. Affectivespotlight: Facilitating the communication of
affective responses from audience members during online presentations. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–13.

[19] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an llm to help with code understanding. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[20] Tricia J. Ngoon, S Sushil, Angela E.B. Stewart, Ung-Sang Lee, Saranya Venkatra-
man, Neil Thawani, Prasenjit Mitra, Sherice Clarke, John Zimmerman, and Amy
Ogan. 2024. ClassInSight: Designing Conversation Support Tools to Visualize
Classroom Discussion for Personalized Teacher Professional Development. In
Proceedings of the CHI Conference on Human Factors in Computing Systems (Hon-
olulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY,
USA, Article 663, 15 pages. https://doi.org/10.1145/3613904.3642487

[21] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane
Anderson, and Molly Q Feldman. 2024. How Beginning Programmers and Code
LLMs (Mis) read Each Other. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–26.

[22] Michel Raymond and François Rousset. 1995. An exact test for population
differentiation. Evolution (1995), 1280–1283.

[23] Arissa J Sato, Zefan Sramek, and Koji Yatani. 2023. Groupnamics: Designing
an interface for overviewing and managing parallel group discussions in an
online classroom. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–18.

[24] Wannapon Suraworachet, Jennifer Seon, and Mutlu Cukurova. 2024. Predict-
ing challenge moments from students’ discourse: A comparison of GPT-4 to
two traditional natural language processing approaches. In Proceedings of the
14th Learning Analytics and Knowledge Conference (Kyoto, Japan) (LAK ’24).
Association for Computing Machinery, New York, NY, USA, 473–485. https:
//doi.org/10.1145/3636555.3636905

[25] Xiaohang Tang, Xi Chen, Sam Wong, and Yan Chen. 2023. VizPI: A Real-Time
Visualization Tool for Enhancing Peer Instruction in Large-Scale Programming
Lectures. In Adjunct Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (San Francisco, CA, USA) (UIST ’23 Adjunct).
Association for Computing Machinery, New York, NY, USA, Article 17, 3 pages.
https://doi.org/10.1145/3586182.3616632

[26] Xiaohang Tang, SamWong, Kevin Pu, Xi Chen, Yalong Yang, and Yan Chen. 2024.
VizGroup: An AI-assisted Event-driven System for Collaborative Programming
Learning Analytics. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Association

for Computing Machinery, New York, NY, USA, Article 93, 22 pages. https:
//doi.org/10.1145/3654777.3676347

[27] Janneke Van de Pol, Monique Volman, and Jos Beishuizen. 2010. Scaffolding in
teacher–student interaction: A decade of research. Educational psychology review
22 (2010), 271–296.

[28] Anouschka van Leeuwen, Stephanie D Teasley, and Alyssa Friend Wise. 2022.
Teacher and student facing learning analytics. Handbook of learning analytics
(2022), 130–140.

[29] Alyssa Friend Wise and Yeonji Jung. 2019. Teaching with analytics: Towards a
situated model of instructional decision-making. Journal of Learning Analytics 6,
2 (2019), 53–69.

[30] TongshuangWu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (NewOrleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582

[31] Kexin Bella Yang, Vanessa Echeverria, Zijing Lu, Hongyu Mao, Kenneth Hol-
stein, Nikol Rummel, and Vincent Aleven. 2023. Pair-up: prototyping human-AI
co-orchestration of dynamic transitions between individual and collaborative
learning in the classroom. In Proceedings of the 2023 CHI conference on human
factors in computing systems. 1–17.

[32] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Mis-
understandings By Visualizing Students’ Coding Progress. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1–16.

https://arxiv.org/abs/2405.08447
https://arxiv.org/abs/2405.08447
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3613904.3642487
https://doi.org/10.1145/3636555.3636905
https://doi.org/10.1145/3636555.3636905
https://doi.org/10.1145/3586182.3616632
https://doi.org/10.1145/3654777.3676347
https://doi.org/10.1145/3654777.3676347
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Issue Definition

Copy-Paste Solution This critical situation occurs when a student pastes a solution from another source.

Don’t know the basic
knowledge In this situation, the current student lacks the necessary knowledge of the programming

language and its concepts. Most commonly in the form of typing pseudo-syntax (syntax that
they’ve made up to accomplish the task, or combining existing syntax in invalid ways).

Syntax error Syntax errors that be evaluated based on factors such as submission frequency, coexistence
with other issues, and error quantity.

Logical error Flaws in the student’s code that prevent them from passing all the test cases. Usually, these
flaws stem from a misunderstanding of the problem or lack of basic knowledge.

Chat-bot solution Look for moments where there are no solutions in the chat from any other students, and the
current student will produce a perfect solution after visibly struggling for some time.

Off-topic This critical situation occurs when there are ongoing discussions in the chat that are not related
at all to the current task.

Unproductive
discussion (related but

not the right
approaches)

This type of scenario occurs when students try to help each other, but it does not result in
success or change in the student’s solution.

Unproductive
discussion (Right on

topic but not leading to
understanding)

Multiple attempts of students helping each other, but the student cannot grasp an understanding
regardless of if the other student is explaining it perfectly or not. Or the student trying to help
gives out the solution directly, without aiding the struggling student in understanding the
concept.

Interpersonal Conflicts When there is disagreement among the students in chat. Clashes between students.

Misunderstood the task This critical situation happens when the student fails to grasp the requirements or objectives
of the assignment.

Table 3: Rubric for annotating student coding and conversation data

A Rubric for annotating feedback
Incorrect Feedback (-1): This type of feedback leads to confusion,
frustration, or lack of confidence in the student. It may also result
in students applying incorrect practices. Characteristics:
• The feedback is factually incorrect, wrong, or misleading.
• Provides direct answers without explanation, preventing learning
or understanding.

• Uses confusing or unclear language, making it hard for students
to apply the feedback.

• Offers overly negative or harsh criticism without actionable steps
for improvement.

• Contains errors that can misguide students or reinforce incorrect
understanding of concepts.
Shallow Feedback (0): This type of feedback may leave the stu-

dent feeling unsure of how to proceed or improve.While technically
correct, it doesn’t significantly help the student grow. Characteris-
tics:
• The feedback is factually correct but lacks depth or clarity.
• Offers minimal insight or vague suggestions, not addressing spe-
cific issues with enough detail.

• Does not guide the student toward improvement or deeper un-
derstanding.

• Is clear but not particularly encouraging, leaving the student
without a clear sense of next steps.

• Avoids technical errors, but lacks motivation or educational value.

High-quality Feedback (1): High-quality feedback helps stu-
dents understand what they did right, where they went wrong,
and how to improve. It fosters a growth mindset and promotes
deeper learning, building both technical and problem-solving skills.
Characteristics:

• The feedback is clear, specific, and actionable, helping the student
understand both their strengths and areas for improvement.

• Encourages learning by explaining why something is incorrect
and offering suggestions for how to fix it.

• Provides context for why a certain approach is better and explains
the concepts behind it.

• Balances criticism with encouragement, helping build the stu-
dent’s confidence while addressing errors.

• Links feedback to learning objectives, reinforcing key program-
ming concepts in a positive and constructive manner.

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 4: User Interface for annotator tool. Annotators select an activity from each student (Left) and provide a label by
reviewing the playback for the selected activity.

Figure 5: User Interface for annotating feedback. Annotators select a feedback message from the message list (Top) and provide
a label by reviewing the content of the message and related codes and discussions.

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Untitled 1

You are a programming instructor tasked with identifying students who may be struggling due to technical or communication issues. Please first identify the learning objectives by checking the programming
problem. You have access to the student's latest code submission, the student's previous code submissions, and the student's group discussion history. Using this context—which includes their code,
discussion contributions, error messages, pass rate, and overall class performance—determine if the student is in a critical situation, which means that the student needs your attention and could benefit
from your assistance.

The programming problem students are working on: Write a function called under100 that accepts a list of integers and returns the number of values in the list that are less than 100.

Input Format(JSON):

A collection containing the student's basic information, latest activity(code submission/message), previous code submissions, and group discussion history:

student ID: [string] the student's ID

latestActivity:[Object] containing information about the student's latest submission, including:

activityType:[string] type of activity

time: [numeric] time the activity was made (second)

activityContent:[string] code or message

errorType: [string] type of the error of the code submission if the activity type is submission

errorMessage: [string] error message of the code submission if the activity type is submission

passRate:[numeric] the student's current passrate

currentMessageCount:[numeric] number of messages from the student

groupPassRate:[numeric] the group's current passrate

submissionHistory:[Array] a list of previous code submission records of the student, each containing:

time: [numeric] time the submission was made (second)

passRate: [numeric] the passrate of this submission

errorType: [string] type of the error of the code submission

errorMessage: [string] error message of the code submission

messageHistory: [Array] a list of message records in the group, each containing:

time: [numeric] time the message was sent (second)

message: [string] the content of the message

sender_id: [string] the id of the student who sent the message

senderPassRate: [numeric] the pass rate of the sender right now

Input Example:

{

"id": "9027_submission",

"type": "submission",

"student_id": "7512",

"timestamp": "2024-04-23T13:35:22.133773+00:00",

"classAveragePassRate": 6.530612244897959,

"student_name": "B",

"latestSubmission": {

"type": "submission",

"time": "2024-04-23T13:35:22.133773+00:00",

"code": "def count_range(integers_list):\n if 40 <= num <= 50:\n num = count(integers_list)\n return num\n ",

"errorMessage": "File \"<exec>\", line 9, in count_range\nUnboundLocalError: cannot access local variable 'num' where it is not associated with a value",

"passRate": 0,

"currentMessageCount": 0,

"groupPassRate": 0

},

"submissionHistory": [],

"messageHistory": []

}

Output Format(valid JSON):

A collection containing the classification result and the reason:

isCritical: [boolean] the classification result of whether the student is in a critical situation.

reason: [string] explanation of the classification

Output Example:

{

"isCritical": true,

"reason": "The student has a pass rate of 0 for their latest submission, indicating they are unable to produce functional code. The error message indicates an

'UnboundLocalError', which suggests a misunderstanding of variable scope and initialization. Additionally, the student has no previous submission history and h

as not participated in any group discussions, as shown by the empty message history. This lack of engagement and consistent failure to submit working code indi

cates that the student is in a critical situation and requires immediate assistance."

}

Figure 6: Prompt for identifying critical issue

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Issue Prompt 1

Issue Prompt
You are a programming instructor tasked with identifying students' struggles based on their behaviors. You have access to the student's latest code submission, the
student's previous code submissions, and the student's group discussion history. Using this context—which includes their code, discussion contributions, error
messages, pass rate, and overall class performance—determine what kinds of struggles the students are facing right now. The struggle types and their rubrics are: [

"Don't know the basic knowledge": "Student lacks fundamental programming knowledge, often evident through pseudo-syntax or misuse of core language
constructs (e.g., incorrectly using def or parameters).",

"Syntactic and Runtime Errors": "Common errors, but not always critical. Consider factors like the number of submissions, other errors (e.g., logical), and
frequency of syntax issues before labeling as critical.",

"Logical error": "Occurs when a student’s code has no other errors but fails to meet the task's requirements due to a misunderstanding or lack of basic knowledge.",

"Chat-bot solution": "Similar to copy-paste, but the student suddenly produces a perfect solution after struggling. AI-generated solutions often have flawless
grammar and comments.",

"Misunderstood the task": "Student misunderstands the assignment's requirements, often evident in incorrect returns or variable initialization.",

"Copy-paste solution": "Occurs when a student pastes a solution from the chat channel. Signs include sudden drastic changes in their solution or pasting code into
chat".
]

The programming problem students are working on: Write a function called under100 that accepts a list of integers and returns the number of values in the list that
are less than 100.

Input Format(JSON):

A collection containing the student's basic information: the student's latest activity(code submission/message), the student's previous code submissions, and group
discussion history:
-student ID: [string] the student's ID

latestActivity:[Object] containing information about the student's latest submission, including:

activityType:[string] type of activity

time: [numeric] time the activity was made (second)

activityContent:[string] code or message

errorType: [string] type of the error of the code submission if the activity type is submission

errorMessage: [string] error message of the code submission if the activity type is submission

passRate:[numeric] the student's current passrate

currentMessageCount:[numeric] number of messages from the student

groupPassRate:[numeric] the group's current passrate

submissionHistory:[Array] a list of previous code submission records of the student, each containing:

id: [string] id of the submission

time: [numeric] time the submission was made (second)

passRate: [numeric] the passrate of this submission

errorType: [string] type of the error of the code submission

errorMessage: [string] error message of the code submission

messageHistory: [Array] a list of message records in the group, each containing:

id: [string] id of the message

time: [numeric] time the message was sent (second)

message: [string] the content of the message

sender_id: [string] the id of the student who sent the message

senderPassRate: [numeric] the pass rate of the sender right now

Output Format(valid JSON):

A collection containing the classification result and the reason:

struggles: [Array] list of classified struggles of the students based on the student's behavior. Elements are Objects containing:

name: [string] name of the struggle

reason: [string] reason of the classification.

Figure 7: Prompt for identifying student’s struggles 1

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Untitled 1

User Prompt

{

 "id": "05ollRMtoAhLVmpbKP3F",

 "type": "submission",

 "student_id": "iFJgbW65I3OeqKLQAHRy",

 "latestSubmission": {

 "type": "submission",

 "time": 413,

 "code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n

if number < 100:\n split.it.remove(number)\n else:\n break\n return split_it",

 "errorType": "No Compile Error",

 "errorMessage": "",

 "passRate": 0,

 "currentMessageCount": 0,

 "groupPassRate": 33.333333333333336

 },

 "submissionHistory": [

 {

 "id": "81IDaR5ep0QZEfDWSqs9",

 "time": 217,

 "passRate": 0,

 "errorType": "No Compile Error",

 "errorMessage": ""

 },

 {

 "id": "TEgPWjQeE3xo0hjpohIN",

 "time": 230,

 "passRate": 0,

 "errorType": "No Compile Error",

 "errorMessage": ""

 },

 {

 "id": "OwbWPSykxs7mfxWdVz5a",

 "time": 331,

 "passRate": 0,

 "errorType": "No Compile Error",

 "errorMessage": ""

 },

 {

 "id": "ojs1CHiw4fLLfMHruWgs",

 "time": 393,

 "passRate": 0,

 "errorType": "No Compile Error",

 "errorMessage": ""

 }

],

 "messageHistory": []

 }

Assistant Prompt

{

 "struggles": [

 {

 "name": "Don't know the basic knowledge",

 "reason": "The student is attempting to use input and string manipulation to solve a problem that requires basic knowledge of list operations and compari

sons. The approach taken does not align with the task requirements."

 },

 {

 "name": "Logical error",

 "reason": "The logic in the code is flawed; the student is trying to remove elements from a list while iterating over it, which can lead to unexpected be

havior. Additionally, the condition for checking if a number is less than 100 is incorrectly applied to strings instead of integers."

 },

 {

 "name": "Unproductive discussion(Right on topic but not leading to understanding)",

 "reason": "The student has not engaged in any group discussions, which may indicate a lack of seeking help or clarification on the task, leading to conti

nued misunderstanding."

 }

]

}

Figure 8: Input and Output Example for identifying student’s struggle 1

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Untitled 1

You are a programming instructor tasked with identifying students' struggles based on their behaviors. You have access to the student's
latest code submission, the student's previous code submissions, and the student's group discussion history. Using this context—which
includes their code, discussion contributions, error messages, pass rate, and overall class performance—determine what kinds of
struggles the students are facing right now. The struggle types and their rubrics are: [
"Off-topic": "Chat discussions unrelated to the task at hand.",
"Unproductive Discussion (Wrong Approach)": "Students help, but the guidance provided is incorrect, leading to no improvement in the
solution after multiple attempts.",
"Unproductive Discussion (On-Topic, No Understanding):": "Help is given, but the struggling student cannot grasp the explanation, or the
helper gives the solution directly without fostering understanding.",
"Interpersonal Conflicts": "Disagreements or clashes between students in the chat.",
]

The programming problem students are working on: Write a function called under100 that accepts a list of integers and returns the
number of values in the list that are less than 100.

Input Format(JSON):

A collection containing the student's basic information: the student's latest activity(code submission/message), the student's previous
code submissions, and group discussion history:
-student ID: [string] the student's ID

latestActivity:[Object] containing information about the student's latest submission, including:

activityType:[string] type of activity

time: [numeric] time the activity was made (second)

activityContent:[string] code or message

errorType: [string] type of the error of the code submission if the activity type is submission

errorMessage: [string] error message of the code submission if the activity type is submission

passRate:[numeric] the student's current passrate

currentMessageCount:[numeric] number of messages from the student

groupPassRate:[numeric] the group's current passrate

submissionHistory:[Array] a list of previous code submission records of the student, each containing:

id: [string] id of the submission

time: [numeric] time the submission was made (second)

passRate: [numeric] the passrate of this submission

errorType: [string] type of the error of the code submission

errorMessage: [string] error message of the code submission

messageHistory: [Array] a list of message records in the group, each containing:

id: [string] id of the message

time: [numeric] time the message was sent (second)

message: [string] the content of the message

sender_id: [string] the id of the student who sent the message

senderPassRate: [numeric] the pass rate of the sender right now

Output Format(valid JSON):

A collection containing the classification result and the reason:

struggles: [Array] list of classified struggles of the students based on the student's behavior. Elements are Objects containing:

name: [string] name of the struggle

reason: [string] reason of the classification.

Figure 9: Prompt for identifying student’s struggles 2

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Untitled 1

User Prompt

{

"id": "05ollRMtoAhLVmpbKP3F",

"type": "submission",

"student_id": "iFJgbW65I3OeqKLQAHRy",

"latestSubmission": {

"type": "submission",

"time": 413,

"code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n

if number < 100:\n split.it.remove(number)\n else:\n break\n return split

_it",

"errorType": "No Compile Error",

"errorMessage": "",

"passRate": 0,

"currentMessageCount": 0,

"groupPassRate": 33.333333333333336

},

"submissionHistory": [

{

"id": "81IDaR5ep0QZEfDWSqs9",

"time": 217,

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "TEgPWjQeE3xo0hjpohIN",

"time": 230,

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "OwbWPSykxs7mfxWdVz5a",

"time": 331,

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "ojs1CHiw4fLLfMHruWgs",

"time": 393,

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

}

],

"messageHistory": []

}

Assistant Prompt

{

 "struggles": [

 {

 "name": "Unproductive discussion(Right on topic but not leading to understanding)",

 "reason": "The student has submitted multiple code attempts with no improvement in their understanding of the problem, as indicated by

a consistent pass rate of 0 and no messages in the group discussion to clarify their understanding."

 },

 {

 "name": "Unproductive discussion(related but not the right approaches)",

 "reason": "The student's code attempts show a misunderstanding of the problem requirements, such as using input() and attempting to mod

ify the list incorrectly, indicating that any help they may have received was not effective."

 }

]

}

Figure 10: Input and Output Example for identifying student’s struggle 2

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Untitled 1

You are a programming instructor tasked with writing feedback to students based on their issues. Your task is:

1. Based on the issue, the given feedback type, and the given components (e.g., [issue], [solution], [strategy], [example], [next step]), write a high-level template
containing the structure of the feedback to bridging the chosen components in the input. Your feedback must be concise.

2. For each component, write a short description of what would it be about in the format described below.

Your feedback needs to contain information about the attainment of learning goals related to the task or performance (in [issue]), information about progress and/or
about how to proceed (in [issue]/[strategy]/[example]), and more information, more tasks, and more expectations (in [example]/[next step]). Meanwhile, your
feedback needs to be regarding three levels: Task level (how well tasks are understood/performed), Process Level the main process needed to understand/perform
tasks), and Self-regulation Level (Self-monitoring, directing, and regulating of actions).

The programming problem students are working on: Write a function called under100 that accepts a list of integers and returns the number of values in the list that
are less than 100.

Input Format(valid JSON):

A collection containing:

issue:[string] description of the issue

feedbackType:[string] the type of the feedback, including [Hint], [Explanation], [Verification]. [Hint] is to give a minimum cue to help the student back in the right
direction, and [Explanation] is to give the student a considerable amount of help to proceed. While [Verification] is to provide the students with another similar
programming question with the same learning objectives to verify the student's understanding.

chosenComponents: [Array] a list of components to be included in the feedback.

A collection containing the student's basic information: the student's latest activity(code submission/message), the student's previous code submissions, and group
discussion history:

student ID: [string] the student's ID

Input Example:

{

"issue": "Lack of understanding of basic list operations and iteration." ,

"feedbackType": "Hint",

"chosenComponents: ["issue", "strategy", "next step"]

}

Output Format(valid JSON):

A collection containing:

feedbackContent:[string] the content of the feedback with the chosen components properly bridged. The component must be displayed by a [PLACEHOLDER]
such as [issue], [solution], [strategy], [example], [next step]. The details of components MUST NOT be included and the feedback MUST be concise.

componentDescription:[array] a list of objects containing a short description of the content of the component:

component:[string] name of the component

description:[string] a short description

Output Example:

{

"feedbackContent": "It seems you are having some trouble with basic list operations and iteration. [issue] To help you get bac

k on track, [strategy]. Once you feel more comfortable, [next step]",

"componentDescription": [

{

"component": "issue",

"description": "A brief description of the student's difficulty with basic list operations and iteration."

},

{

"component": "strategy",

"description": "A suggestion to review list iteration and applying conditions to list elements."

},

{

"component": "next step",

"description": "Encouragement to implement a simple loop to check each element in the list."

}

]

}

Figure 11: Prompt for generating feedback templates

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan Chen

Untitled 1

You are a programming instructor tasked with writing feedback to students based on their issues. You are conducting peer instruction in your lecture, where students are divided into small groups to have discussions and solve the
programming task. Your task is:

1. Complete the feedback by filling in the placeholder of feedback components (e.g., [issue], [solution], [strategy], [example], [next step]) following the component description in the input. The details you add should be based on
students' recent code submissions and discussion history in the input. You should consider the group dynamic and motivate engagement in the group discussion if the discussion is not active when writing the feedback.

2. For each component, repeat the raw content in the format described below.

Your feedback needs to contain information about the attainment of learning goals related to the task or performance (in [issue]), information about progress and/or about how to proceed (in [issue]/[strategy]/[example]), and more
information, more tasks, and more expectations (in [example]/[next step]). Meanwhile, your feedback needs to be regarding three levels: Task level (how well tasks are understood/performed), Process Level the main process needed to
understand/perform tasks), and Self-regulation Level (Self-monitoring, directing, and regulating of actions). Your feedback MUST not contain the direct solution to the entire programming problem. Do motivate discussion when
discussion stage is started ("discussionStart": true).

The programming problem students are working on: Write a function called under100 that accepts a list of integers and returns the number of values in the list that are less than 100.

Input Format(valid JSON):

A collection containing:

feedbackType:[string] the type of the feedback, including [Hint], [Explanation], [Verification]. [Hint] is to give a minimum cue to help the student back in the right direction, and [Explanation] is to give the student a considerable
amount of help to proceed. While [Verification] is to provide the students with another similar programming question with the same learning objectives to verify the student's understanding.

chosenComponents: [Array] a list of components to be included in the feedback.

feedbackTemplate: [string] a template of feedback to be completed by filling the [PLACEHOLDER]s by following the description of components.

componentDescription:[array] a list of objects containing the short description of the component:

[component]:[string] short description of the component

studentDetails: [Object] A collection containing the student's basic information: the student's latest activity(code submission/message), the student's previous code submissions, and group discussion history:

student ID: [string] the student's ID

type: [string] type of activity ("submission" or "message")

classAveragePassRate: [int] class average passRate

discusssionStart: [boolean] if true, the discussion stage starts

student_name: [string] name of the student

latestActivity:[Object] containing information about the student's latest submission, including:

activityType:[string] type of activity

time: [numeric] time the activity was made (second)

activityContent:[string] code or message

errorType: [string] type of the error of the code submission if the activity type is submission

errorMessage: [string] error message of the code submission if the activity type is submission

passRate:[numeric] the student's current passrate

currentMessageCount:[numeric] number of messages from the student

groupPassRate:[numeric] the group's current passrate

submissionHistory:[Array] a list of previous code submission records of the student, each containing:

id: [string] id of the submission

time: [numeric] time the submission was made (second)

passRate: [numeric] the passrate of this submission

errorType: [string] type of the error of the code submission

errorMessage: [string] error message of the code submission

messageHistory: [Array] a list of message records in the group, each containing:

id: [string] id of the message

time: [numeric] time the message was sent (second)

message: [string] the content of the message

sender_id: [string] the id of the student who sent the message

senderPassRate: [numeric] the pass rate of the sender right now

Input Example:

{

"feedbackType": "Hint",

"chosenComponents: ["issue", "strategy", "next step"],

"feedbackTemplate": "It seems you are having some trouble with basic list operations and iteration. [issue] To help you get back on track, [strategy]. Once you feel more comfortable,

[next step].",

"componentDescription": [

{

"component": "issue",

"description": "A brief description of the student's difficulty with basic list operations and iteration."

},

{

"component": "strategy",

"description": "A suggestion to review list iteration and applying conditions to list elements."

},

{

"component": "next step",

"description": "Encouragement to implement a simple loop to check each element in the list."

}

],

"studentDetails": {

"id": "05ollRMtoAhLVmpbKP3F",

"type": "submission",

"student_id": "iFJgbW65I3OeqKLQAHRy",

"classAveragePassRate": 66,

"discussionStart": true,

"student_name": C

"latestSubmission": {

"type": "submission",

"time": 413,

"code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n if number < 100:\n

split.it.remove(number)\n else:\n break\n return split_it",

"errorType": "No Compile Error",

"errorMessage": "",

"passRate": 0,

"currentMessageCount": 0,

"groupPassRate": 33.333333333333336

},

SPHERE: Supporting Personalized Feedback at Scale CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Untitled 2

"submissionHistory": [

{

"id": "81IDaR5ep0QZEfDWSqs9",

"time": 217,

"code": "def under100 (list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n if number < 100:\n

split.it.remove(number)\n\n",

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "TEgPWjQeE3xo0hjpohIN",

"time": 230,

"code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n if number < 100:\n

split.it.remove(number)\n\n",

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "OwbWPSykxs7mfxWdVz5a",

"time": 331,

"code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n if number < 100:\n

split.it.remove(number)\n return split_it\n\n",

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

},

{

"id": "ojs1CHiw4fLLfMHruWgs",

"time": 393,

"code": "def under100(list): \n ask_list = input()\n split_it = ask_list.split()\n for number in split_it:\n if number < 100:\n

split.it.remove(number)\n else:\n break\n return split_it\n\n",

"passRate": 0,

"errorType": "No Compile Error",

"errorMessage": ""

}

],

"messageHistory": []

},

}

Output Format(valid JSON):

A collection containing:

componentDetails:[array] a list of objects containing the content of the component:

component:[string] name of the component

description: [string] content of the component. MUST be concise. Talk about engaging in discussion if discussionStart is true.

relatedInfo: [object] only in the 'issue' component; it contains the corresponding code/message mentioned in the description.

type:[string] type of information, either "code" or "message"

content:[array] the related information. For "code", it should be a list of related lines of code(string, one per line). For "message", it should be the text of one related message(string).

feedbackContent:[string] the content of the completed feedback with the chosen components properly filled by following the description and based on student details. You MUST NOT modify anything other than the components'
[PLACEHOLDER]s. There should be no [PLACEHOLDER] in the complete feedback.

Output Example:

{

"componentDetails": [

{

"component": "issue",

"description": "Specifically, your code is attempting to remove elements from the list while iterating over it, which can lead to unexpected behavior. Additionally, the use of input

() and split() is not necessary for this task.",

"relatedInfo": {

"type": "code",

"content": [

" ask_list = input()\n",

" split_it = ask_list.split()\n",

" for number in split_it:\n",

" if number < 100:\n",

" split.it.remove(number)\n"

]

}

},

{

"component": "strategy",

"description": "I suggest reviewing how to properly iterate over a list and apply conditions to its elements. You might want to look into using a simple loop to count the elements th

at meet a certain condition without modifying the list during iteration."

},

{

"component": "next step",

"description": "try implementing a simple loop that checks each element in the list and counts how many are less than 100. Discuss with your group members to share ideas and approach

es."

}

],

"feedbackContent": "It seems you are having some trouble with basic list operations and iteration. You seem to be having trouble with basic list operations and iteration. Specificall

y, your code is attempting to remove elements from the list while iterating over it, which can lead to unexpected behavior. Additionally, the use of input() and split() is not necess

ary for this task. To help you get back on track, I suggest reviewing how to properly iterate over a list and apply conditions to its elements. You might want to look into using a si

mple loop to count the elements that meet a certain condition without modifying the list during iteration. Once you feel more comfortable, try implementing a simple loop that checks

each element in the list and counts how many are less than 100. This will help you understand the correct approach to solving this problem."

}

Figure 12: Prompt for generating feedback content

	Abstract
	1 Introduction
	2 Related Work
	3 Design Goals
	4 SPHERE
	4.1 Critical Issue Recommendation Panel
	4.2 Critical Issue Recommendation Model
	4.3 Personalized Feedback Creation & Review Panel

	5 Lab Study
	5.1 Protocol
	5.2 Results

	6 Limitation and Future Work
	7 Conclusion
	References
	A Rubric for annotating feedback

